LOYOLA COLLEGE (AUTONOMOUS) CHENNAI – 600 034

B.Sc. DEGREE EXAMINATION – **MATHEMATICS**

FIFTH SEMESTER – APRIL 2025

UMT 5501 - REAL ANALYSIS - II

_	nte: 24-04-2025 me: 01:00 PM - 04:00 PM	Dept. No.			Max. : 100 Marks		
SECTION A - K1 (CO1)							
	Answer ALL the Questions (10 x 1 = 1)						
1.	Fill in the blanks				`		
a)	The cluster point of the set $\left\{\frac{1}{n}\right\}$	n = 1,2,3,	is	·			
b)	$\lim_{n\to\infty} \left(1 + \frac{1}{n}\right)^n =$	·					
c)	The value of 'c' in the mean value theorem for $f(x) = x(x-1)$ defined on [1,2] is						
d)	If every open cover of $A \subseteq \mathcal{R}$ has a finite subcover then A is						
e)	A function which has only a finite number of distinct values, each being assigned on one or more subintervals of $[a, b]$ is called						
2.	MCQ		_ .				
a)	$\lim x^n =$						
<i>u)</i>	$x \rightarrow \infty$						
	a) 1 b) 0		c) ∞	d) 1	none of these		
b)	The function $f(x) = x - 2 $						
	a) continuous and differentiable b) continuous but not differentiable						
	c) differentiable but not continuous d) neither continuous nor differentiable				differentiable		
c)	The Rolle's constant 'c' for $f(x)$			•			
1)	a) 1 b) -1	.1	c) 0	d) c	loes not exist		
d)	If $f: [a, b] \to \mathcal{R}$ is continuous		a) manatana	1/1	Iniformaly, continuous		
e)	a) unbounded b) const Cantor set is	anı	c) monotone	<u>u) (</u>	Jniformly continuous		
	a) open b) closed c) Both open and closed d) neither open nor closed						
	SECTION A - K2 (CO1)						
	Answer ALL the Questions (10 x 1 = 1)						
3.	True or False						
a)	Not every polynomial function is continuous on \mathcal{R} .						
b)	Every differentiable function on \mathcal{R} is continuous of \mathcal{R} .						
c)	$\lim_{x \to 0} \left(\frac{1}{x}\right) \text{ does not exist in } \mathcal{R}.$						
d)	Unbounded function cannot be Riemann integrable.						
e)	Union of infinitely many closed sets in \mathcal{R} need not be closed.						
4.	Answer the following						
a)	Show that $\lim_{x\to 0} \left(x \sin \frac{1}{x}\right) = 0$.						
b)	Prove that sine function is continuous on \mathcal{R} .						
c)	Let $f: I \to \mathcal{R}$ has derivative at $c \in I$. Prove that f is continuous at c .						
d)	Define Lipschitz function.						
e)	Find the norm of the partition $P = \{0, 1.3, 2, 3.8, 5\}$ over $[0, 5]$.						

SECTION B - K3 (CO2)						
Answer any TWO of the following in 100 words each. $(2 \times 10 = 20)$						
5.	State and prove the sequential criterion for Limits.					
6.	State and prove Bolzano's Intermediate value theorem.					
7.	Show that $f(x) = \begin{cases} x^2 \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$ is differentiable at all points of \mathcal{R} but does not have a continuous					
0	derivative f^* .					
8.	Prove that a function $f: \mathcal{R} \to \mathcal{R}$ is continuous if and only if $f^{-1}(G)$ is open in \mathcal{R} whenever G is open in					
	\mathcal{R} .					
SECTION C – K4 (CO3)						
Ansv	wer any TWO of the following	$(2 \times 10 = 20)$				
9.	Prove that a number $c \in \mathcal{R}$ is a cluster point of a subset A of \mathcal{R} if and only if	there exist a sequence (a_n)				
	in A such that $\lim(a_n) = c$ and $a_n \neq c$ for all $n \in \mathbb{N}$.					
10.	Let $I = [a, b]$ be a closed bounded interval and $f: I \to \mathcal{R}$ be continuous on I . Prove that f has absolute					
	maximum and absolute minimum on I .					
11.	Deduce the proof of Taylor's theorem.					
12.	If $f: [a, b] \to \mathcal{R}$ is continuous on $[a, b]$ then prove that $f \in \mathcal{R}[a, b]$.					
SECTION D – K5 (CO4)						
Answer any ONE of the following $(1 \times 20 = 20)$						
13.	a) State and prove Rolle's theorem.	(10 marks)				
	b) Let I be closed bounded interval and let $f: \to \mathcal{R}$ be continuous on I.	Prove that <i>f</i> is uniformly				
	continuous on I.	(10 marks)				
14.	a) State and prove Cauchy criterion for Riemann integrable functions.	(10 marks)				
	b) State and prove fundamental theorem of calculus.	(10 marks)				
SECTION E – K6 (CO5)						
Answer any ONE of the following $(1 \times 20 = 20)$						
15.	Prove that a subset K of \mathcal{R} is compact if and only if it is closed and bounded.	•				
16.	a) State and prove the chain rule for differentiation.	(10 marks)				
	b) Let $f:[a,b] \to \mathcal{R}$ and let $c \in [a,b]$. Prove that $f \in \mathcal{R}[a,b]$ if and only if the restrictions of f to $[a,c]$					
	and $[c, b]$ are both Riemann integrable. Also prove that $\int_a^b f = \int_a^c f + \int_c^b f$.					
		(10 marks)				

\$\$\$\$\$\$\$\$\$\$\$